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The variable connectivity, not the shape of the cells, is the
key distinguishing feature of unstructured versus struc-A crucial step in obtaining high-order accurate steady-state solu-

tions to the Euler and Navier–Stokes equations is the high-order tured meshes in a reconstruction context.
accurate reconstruction of the solution from cell-averaged values. Both limited k-exact reconstruction and essentially non-
Only after this reconstruction has been completed can the flux inte- oscillatory (ENO) reconstruction have many of these desir-
gral around a control volume be accurately assessed. In this work,

able properties. The design criteria for k-exact reconstruc-a new reconstruction scheme is presented that is conservative, is
tion given by Barth and Frederickson [1] ensureuniformly accurate, allows only asymptotically small overshoots,
conservation of the mean, good accuracy for smooth func-is easy to implement on arbitrary meshes, has good convergence

properties, and is computationally efficient. The new scheme, called tions, and computational efficiency. These schemes are
DD-L2-ENO, uses a data-dependent weighted least-squares recon- easy to implement on arbitrary meshes. A fixed stencil is
struction with a fixed stencil. The weights are chosen to strongly used, allowing precomputation of certain purely geometric
emphasize smooth data in the reconstruction, satisfying the

quantities used in the reconstruction, with a correspondingweighted ENO conditions of Liu, Osher, and Chan. Because DD-L2-
improvement in efficiency. Accuracy near discontinuitiesENO is designed in the framework of k-exact reconstruction, existing

techniques for implementing such reconstructions on arbitrary is poor, however, and limiting is required to prevent
meshes can be used. The scheme allows graceful degradation of overshoots of O(1). Limiters that retain good con-
accuracy in regions where insufficient smooth data exists for recon- vergence properties (e.g., [2]) are often computationally
struction of the requested high order. Similarities with and differ- expensive.ences from WENO schemes are highlighted. The asymptotic behav-

By design, the ENO reconstruction schemes of Hartenior of the scheme in reconstructing smooth and piecewise smooth
et al. [3–5] conserve the mean, are uniformly accurate atfunctions is demonstrated. DD-L2-ENO produces uniformly high-

order accurate reconstructions, even in the presence of discontinu- all points for which a smooth neighborhood exists, and
ities. Results are shown for one-dimensional scalar propagation and guarantee that overshoots will be no larger than the order
shock tube problems. Encouraging preliminary two-dimensional of the truncation error of the reconstruction. Uniform high-
flow solutions obtained using DD-L2-ENO reconstruction are also

order accuracy is obtained by using reconstruction stencilsshown and compared with solutions using limited least-squares
that vary in both space and time. Unfortunately, such sten-reconstruction. Q 1997 Academic Press

cils can hamper convergence to steady state. The weighted
ENO (WENO) family of schemes overcomes this difficulty

1. INTRODUCTION by using all possible stencils with a data-dependent
weighting [6, 7]. Stencils containing nonsmooth data are
not excluded by these schemes, but instead are given aA crucial step in obtaining high-order accurate steady-

state solutions to the Euler and Navier–Stokes equations weight on the order of the truncation error. Because the
weights vary smoothly with the data, these schemes con-is the high-order accurate reconstruction of the solution

from cell-averaged values. Only after this reconstruction verge well. With proper choice of weights, WENO schemes
can attain (2k 1 1)-order accuracy for smooth functionshas been completed can the flux integral around a control

volume be accurately assessed. Ideally, the reconstruction using (k 1 1)-point stencils [7]. These schemes are one-
dimensional in nature and are applied direction-by-direc-should conserve the mean value of the function in each

cell, be uniformly accurate with no overshoots, have good tion for reconstruction on multidimensional structured
meshes.steady-state convergence properties, be computationally

efficient and be easy to implement on arbitrary meshes. The implementation of stencil-searching ENO schemes
on unstructured meshes is difficult because stencils mustIn particular, the scheme must be easy to implement on

meshes for which the local mesh connectivity is variable. be sought for all dimensions simultaneously and because
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QUASI-ENO SCHEMES FOR UNSTRUCTURED MESHES 7

the number of possible stencils is very large [8, 9]. The smooth data. ENO schemes try to find the smoothest possi-
ble stencil of k 1 1 points containing the control volumeWENO family holds out some promise here, in that each

of a set of stencils could be included with a data-dependent in question; k 1 1 stencils exist. WENO schemes use a
convex combination of reconstructions using each possibleweight, eliminating the need for complex logic to find a

smooth stencil. Nevertheless, such schemes would still be stencil, with weights that can be written as
hampered in practice because there may be no smooth
stencil; graceful recovery in this situation is not a subject

wi 5
ai

ok
i50 ai

. (1)discussed in the literature.
In this work, a new reconstruction scheme is presented

that has the best properties of both limited k-exact recon- When the function is smooth, each stencil provides a
struction schemes and ENO schemes. The new scheme, (k 1 1)-order accurate reconstruction. In this case, the ai
called DD-L2-ENO, uses a data-dependent weighted least- can be chosen to give (2k 1 1)-order accuracy [7]. On the
squares reconstruction with a fixed stencil. To this extent, other hand, when the data in a stencil is nonsmooth, the
the scheme resembles existing k-exact reconstruction algo- weight for that stencil is on the order of the truncation
rithms [1, 10] and can build on that technology base. The error. Liu, Osher, and Chan [6] define this as the ‘‘ENO
feature which distinguishes DD-L2-ENO from standard k- property’’ for WENO schemes. For a more complete dis-
exact schemes is the use of data-dependent weights. Each cussion of these schemes, see [6, 7].
point in a reconstruction stencil is given a data-dependent
weight, chosen to strongly emphasize smooth data in the 3. DATA-DEPENDENT LEAST-SQUARES
reconstruction. Specifically, the weight given to nonsmooth ENO RECONSTRUCTION
data is on the order of the truncation error. In this respect,
DD-L2-ENO is similar to WENO schemes, except that Rather than beginning with a direction-by-direction
the point-wise nature of the weighting with DD-L2-ENO ENO scheme and adapting it to unstructured meshes, we
imparts some additional flexibility in choosing the smooth take the opposite approach: begin with a least-squares
data to include in the reconstruction. For both DD-L2- reconstruction scheme suitable for use on unstructured
ENO and WENO schemes, the weights vary smoothly with meshes and modify it to satisfy the ENO property. That
variations in the data, which improves steady-state conver- is, we seek to solve the following problem:
gence in comparison to stencil-searching ENO schemes. Consider a domain V which has been tessellated; the
In regions where insufficient smooth data is available for tessellation has a characteristic length scale Dx, at least
high-order reconstruction, DD-L2-ENO automatically re- locally. The median dual of the tessellation defines for each
duces the order of accuracy of the reconstruction locally; vertex vi a surrounding control volume Vi . For any function
this should improve robustness in practice. u(x) defined on V and its control-volume averaged values

Section 2 reviews WENO reconstruction schemes in one ui , compute an expansion Ri(x 2 xi) about vi that
dimension. Section 3 presents the new data-dependent

• conserves the meanleast-squares reconstruction, including discussion of the
• has compact supportcomputation of the data-dependent weights and require-

ments for the algorithm used to solve the least-squares • reconstructs exactly polynomials of degree #k. Equiv-
problem. Section 4 shows results for reconstruction of alently, Ri(x 2 xi) 2 u(x) 5 O(Dxk11)
smooth and nonsmooth functions, including solutions to • satisfies the ENO property of Liu, Osher, and Chan [6].
the scalar wave equation. In Section 5, some sample flow

The remainder of this section will describe this processsolutions are shown.
in two dimensions. Reduction to one dimension, extension
to three dimensions, and application to structured meshes2. WEIGHTED ENO RECONSTRUCTION
are all straightforward variations on the theme.

The criteria set forth by Harten et al. [5] for essentially
3.1. Conservation of the Meannonoscillatory reconstruction place a great emphasis on

accuracy, in that ENO schemes obtain high-order accurate Conservation of the mean within a control volume re-
reconstructions for all control volumes having a smooth quires that
neighborhood. Also, ENO reconstruction conserves the
mean and, in one dimension, guarantees that the total E

Vi

Ri(x 2 xi) dA 5 E
Vi

u(x) dA. (2)
variation of the reconstruction will not exceed that of the
original function by more than O(Dxk11).

The weighted ENO (WENO) schemes of Liu, Osher, This can be accomplished by using zero-mean polynomials
in expanding about vi . That is, by writingand Chan [6] take a somewhat different approach to non-
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Ri(x 2 xi) ; P(x). (6)
Ri(x 2 xi) 5 ui 1

u
xUi

(x 2 xi 2 xi)

Alternatively, one can say that for any u(x),

1
u
yUi

(y 2 yi 2 yi) Ri(x 2 xi) 5 u(x) 1 O(Dxk11). (7)

In practice, this accuracy requirement means that the modi-1
2u
x2U

i

(x 2 xi)2 2 x2
i

2
(3)

fied Taylor series expansion of Ri given in Eq. (3) must be
carried out through the kth derivatives. To compute these
derivatives, we seek to minimize the error in predicting1

2u
x yUi

((x 2 xi)(y 2 yi) 2 xyi)
the mean value of the function for control volumes in the
stencil hVjji . The mean value, for a single control volume

1
2u
y2U

i

(y 2 yi)2 2 y2
i

2
1 ? ? ? , Vj , of the reconstructed function Ri is

where 1
Aj

E
Vj

Ri(x 2 xi) dA

xnym
i ; 1

Ai
E

Vi

(x 2 xi)n(y 2 yi)m dA. (4)

5 ui 1
u
xUi

S 1
Aj

E
Vj

(x 2 xi) dA 2 xiD
By inspection, the expansion of Eq. (3) satisfies Eq. (2).
As a practical matter, the integral of Eq. (4) is most easily
computed by using Green’s theorem to convert it to a 1

u
yUi

S 1
Aj

E
Vj

(y 2 yi) dA 2 xiD
(8)boundary integral around Vi ,

1
2u
x2U

i
S 1

2Aj
E

Vj

(x 2 xi)2 dA 2
1
2

x2
iDxnym 5

1
(n 1 1)Ai

E
Vi

(x 2 xi)n11(y 2 yi)m dy. (5)

This integral may be evaluated exactly using a Gaussian
1

2u
x yUi

S 1
Aj

E
Vj

(x 2 xi)(y 2 yi) dA 2 xyiDquadrature of appropriate order along the boundary of
the control volume.

1
2u
y2U

i
S 1

2Aj
E

Vj

(y 2 yi)2 dA 2
1
2

y2
iD1 ? ? ? .3.2. Compact Support

Compact support implies that the reconstruction Ri will
To avoid computing moments of each control volume innot require data that is too far removed physically from
hVjji about vi , replace x 2 xi and y 2 yi with (x 2 xj) 1xi . This in turn implies, for reasonable meshes, that data
(xj 2 xi) and (y 2 yj) 1 (yj 2 yi), respectively. Expandingused in Ri will not be topologically far from control volume
and integrating,i; that is, there will be a small number of levels of neighbors

used to compute Ri . Conversely, using only a small topo-
logical neighborhood of a vertex in the reconstruction en- 1

Aj
E

Vj

Ri(x 2 xi)
sures compact physical support as well. For first- and sec-
ond-order accuracy (k 5 0, 1) in two dimensions, control
volumes adjacent to Vi (the first neighbors) are used to 5 ui 1

u
xUi

(xj 1 (xj 2 xi) 2 xi)
form the set hVjji of control volumes in the reconstruction
stencil. For third- and fourth-order accuracy (k 5 2, 3),

1
u
yUi

(yj 1 (yj 2 yi) 2 yi)second neighbors are also included in hVjji . Because stencil
determination is done as a preprocessing step, it is possible
to add members to the stencils of control volumes which

1
2u
x2U

i

x2
j 1 2xj(xj 2 xi) 1 (xj 2 xi)2 2 x2

i

2
(9)

are too near the boundary to have sufficient support for
the desired order of accuracy of reconstruction.

1
2u

x yUi
(xyj 1 xj(yj 2 yi) 1 (xj 2 xi)yj3.3. Accuracy for Smooth Functions

Accuracy of the reconstruction for smooth functions can 1 (xj 2 xi)(yj 2 yi) 2 xyi)
be stated in two equivalent ways. The reconstruction can
be said to be k-exact for some k if, when reconstructing 1

2u
y2U

i

y2
j 1 2yj(yj 2 yi) 1 (yj 2 yi)2 2 y2

i

2
1 ? ? ? .

P(x) [ hxmyn : m 1 n # kj,
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The geometric terms in this equation are of the general
wij 5

1
uxj 2 xiu2

. (14)form

`
The least-squares problem of Eq. (12) is solved using

Householder transformations to reduce the left-hand sidexnym
ij ; 1

Aj
E

Vj

((x 2 xj) 1 (xj 2 xi))n

of Eq. (12) to upper-triangular form. After the upper-
triangularization is complete, back-substitution yields the3 ((y 2 yj) 1 (yj 2 yi))m dA 2 xnym

i

(10) required derivatives. There are several good reasons to
use this approach instead of the simpler normal equation

5 Om
l50

On
k50
Sm

l
D Sn

k
D (xj 2 xi)k

solution to the least-squares problem:

• Using Householder transformations gives a more accu-
3 (yj 2 yi)l xn2kym2l

j 2 xnym
i .

rate solution to the least-squares problem than using nor-
mal equations, especially for ill-conditioned matrices. The

In these terms, we can write error in the solution is O(«K) using Householder transfor-
mations and O(«K2) for normal equations, where K is the
condition number of the nonsquare matrix and « is machine1

Aj
E

Vj

Ri(x 2 xi) 5 ui 1
u
xUi

x̂i j 1
u
yUi

ŷi j 1
2u
x2U

i

x2
i j

2
(11)

precision [11]. This also implies greater robustness.

• As a further improvement in robustness, the House-
1

2u
x yUi

xyij 1
2u
y2U

i

y2
i j

2
1 ? ? ? . holder transform approach can detect singular and nearly`

`

`

singular matrices on the fly. If the least-squares problem
is (nearly) singular, a column with (nearly) zero elements

Equation (11) evaluates the mean value of the recon- on the below the diagonal will be encountered during
struction Ri(x 2 xi) for a control volume j, given the low- Householder triangularization. This failure occurs because
order derivatives of the solution at vi and low-order mo- the stencil is inadequate to support the requested number
ments of the control volumes. The difference between this of derivatives. To resolve this, either more points must be
prediction and the actual control-volume average uj is easy added to the reconstruction stencil or the reconstruction
to assess. The derivatives at vi are chosen to minimize must be modified to include fewer derivatives. The latter
this error over the stencil hVjji in a least-squares sense. course is adopted in this work. Derivatives are computed
Geometric weights wij are used to specify the relative im- only to the highest order for which all derivatives can be
portance of good prediction for various control volumes computed; the additional incomplete set of derivatives is
in the stencil, with the weights based on distance between discarded, because no increase in order of accuracy is possi-
vertices. The resulting least-squares problem is ble by retaining them.

• After the upper-triangularization of the least-squares
problem is complete, the residual for the solution is avail-
able at virtually no cost. Before back-substitution, the
problem looks like:

3
Li1

Li2

Li3

???

LiN

4 1
u
x

u
y

1
2

2u
x2

2u
xy

1
2

2u
y2

???

2
i

51
wi1(u1 2 ui)

wi2(u2 2 ui)

wi3(u3 2 ui)

???

wiN(uN 2 ui)

2, (12)

3
x x x ? ? ? x

x x ? ? ? x

x ? ? ? x

? ?? x

x

0

m 3 n

41
u
x

u
y

1
2

2u
x2

2u
xy

1
2

2u
y2

???

2
i

51
r1

r2

???

rm

rm11

???

rn21
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2. (15)

where

Lij 5 (wijx̂i j wij ŷi j wijx2
i j wijxyij wij y2

i j ? ? ?) (13)
`

`
`

and Clearly, the first m equations will be satisfied exactly. The
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remaining n 2 m equations will not be; the residual R , lem will be O(1). On the other hand, for stencils which
cover only smooth regions of the function,which is the same as the residual for the original problem, is

Ri(x 2 xi) 2 u(x) 5 O(Dxk11) (18)
R 5 ! On

l5m11
r2

l . (16)

and R is also O(Dxk11). Therefore, R can be used as a
guage of the smoothness of the data for the entire sten-This residual will be put to use in computing data-depen-
cil hVjji .dent weights to enforce the ENO property, after scaling by

Dx2 to remove the effects of the geometric weighting term. 2. Whether the data in Vj is smoothly connected to
data in Vi can be determined asymptotically by evaluating

3.4. ENO Property

The reconstruction scheme described above is designed for uj 2 ui

uxj 2 xiu
5 HO(1), smoothly connected;

O(Dx21), not smoothly connected.
(19)smooth functions. For nonsmooth functions—those with

O(1) discontinuities—such a scheme allows overshoots of
O(1). This is not desirable for either function approxima-

We seek a data-dependent weighting which uses R totion or scientific computation, where such overshoots can
detect stencils with nonsmooth data and (uj 2 ui)/easily produce aphysical values. This problem has typically uxj 2 xiu to determine which data within that stencil shouldbeen addressed by performing a reconstruction with geo-
be excluded and which included. Put another way, we seekmetric weights and preventing overshoots by heuristically
to construct a smoothness indicator analogous to the di-limiting, or reducing, the derivatives (e.g., [10, 2]). While
vided difference indicators of [6, 7] which is appropriatethis approach is not unsuccessful, it provides only a me-
for unstructured meshes and least-squares reconstruction.chanical solution to an underlying theoretical problem.
One appropriate weighting isSpecifically, the stencil for a control volume i near a discon-

tinuity will include control volumes j which lie across the
discontinuity. Because the function is not smooth, approxi- WDD

i j 5 1@S« 1 R l2 U uj 2 ui

uxj 2 xiu
U(k11)D, (20)

mating data in Vj by a modified Taylor series around vi is
inappropriate. Ignoring this mathematical fact causes the
unphysically large derivatives that limiting seeks to reduce. where « 5 10210 prevents division by zero; l, a length scale

A better alternative is to reconstruct using only data for the control volume i, is included to remove the effects
that is smoothly connected to data in i. This approach is of the geometric weighting on R ; R l2u(uj 2 ui)/uxj 2 xiuu(k11)

taken directly by typical ENO schemes, which by design is the smoothness indicator.
search for a smooth stencil and completely exclude non- Asymptotically, the behavior of this weighting for the
smooth data from the reconstruction. WENO schemes three important cases is
work less directly, weighting all possible stencils and
weighting those containing nonsmooth data with a weight
that is of the order of the truncation error.

In a weighted least-squares context, weights are assigned WDD
i j 5 5

max(«21, O(Dx2(k11))), smooth function,

O(1) smooth data in stencil
with non-smooth data,

O(Dx(k11)), non-smooth data.
to control volumes rather than to stencils. Nevertheless,
the goal is to weight nonsmooth data with O(Dxk11) to
satisfy the ENO condition of Liu, Osher, and Chan [6]. (21)
We seek to construct a data-dependent weight, which will
multiply the previously calculated geometric weight. This In summary, for stencils containing only smoothly con-
construction is based on two observations: nected data, the data-dependent weights are all of same

1. If the function is nonsmooth, and if the neighbor- order, ensuring that the good qualities of the data-indepen-
hood of Vi crosses a discontinuity, then a modified Taylor dent reconstruction will be preserved for smooth functions.
expansion does not adequately describe the function lo- For stencils that are not entirely smooth, the data-depen-
cally and there will be one or more control volumes j dent weight for nonsmooth data is smaller than that for
for which smooth data by a factor of the order of truncation error.

These weightings satisfy the ENO condition of Liu, Osher,
and Chan [6].1

Aj
E

Vj

Ri(x 2 xi) dA 2 uj 5 O(1). (17)
Once the data-dependent weight has been computed for

each control volume j in the stencil, the j th row in the least-
squares problem is scaled by it. Without any computationThis means that the residual R of the least-squares prob-
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other than this scaling, the least-squares problem of Eq. aged function, eliminating the ‘‘switching’’ behavior found
in stencil-searching ENO schemes.(12) can be modified to

There are, however, several key differences between
these two families of schemes:

1. DD-L2-ENO schemes are inherently multi-dimen-
sional; WENO schemes are designed to be applied dimen-
sion by dimension. DD-L2-ENO schemes are therefore
suited for use with unstructured as well as curvilinear struc-
tured meshes, while WENO schemes can be used only with
structured meshes. This does not preclude the construction
of a multidimensional WENO reconstruction scheme capa-3

L9i1

L9i2

L9i3

???

L9iN

41
u
x

u
y

1
2

2u
x2

2u
xy

1
2

2u
y2

???

2
i

51
w9i1(u1 2 ui)

w9i2(u2 2 ui)

w9i3(u3 2 ui)

???

w9iN(uN 2 ui)

2, (22)
ble of reconstructing on unstructured meshes. In outline,
one would need to construct for each control volume Vi a
set of candidate stencils; reconstruct using each stencil;
compute weights for each stencil based on the apparent
smoothness of the data; and compute a weighted sum of
the stencil reconstructions to obtain the final reconstruc-
tion. The most difficult step here is the first: construction
of each candidate stencil requires a systematic search for

where a fixed number of nearby neighbors. Whether these stencils
are stored or recomputed for each use is an implementation
issue of great consequence for the CPU and memory re-L9i j 5 (w9i jx̂i j w9i j ŷi j w9i jx2

i j w9i jxyij w9i j y2
i j ? ? ?) (23)

`
`

`

sources required by such a scheme.

2. WENO schemes can be designed to produce (2k 1and
1) order accurate reconstruction for smooth data in a single
dimension [7]. This is done by choosing weights for each
of k 1 1 (k 1 1)-point stencils so that successive truncationw9i j 5

1
uxj 2 xiu2

WDD
i j . (24)

error terms are annihilated. This possibility is latent in
DD-L2-ENO schemes; given a stencil that contains all the

As data-dependent weights are assigned, the number points used in such a high-order WENO reconstruction, an
that are numerically large are counted. If too few control equal number of derivatives could be accurately calculated.
volumes are assigned high data-dependent weights, insuf- However, the emphasis in developing DD-L2-ENO
ficient smoothly connected data is available to compute schemes has been on application to irregular, multidimen-
the desired number of derivatives. Similarly to the data- sional geometries. For these cases, dimension-by-dimen-
independent case, this results in a lowering of the nominal sion reconstruction fails and, because the number of deriv-
order of accuracy of the reconstruction locally. This loss atives grows as kD, required stencil sizes for such high
of accuracy is most likely to occur for control volumes accuracy grow very rapidly in multiple dimensions. For
straddling discontinuities; near the intersection of two dis- this reason, DD-L2-ENO was not designed with such high
continuities; or near the impingement of a discontinuity on accuracy in mind.
a boundary. Because no nonsmooth data has a significant 3. DD-L2-ENO schemes weigh points individually,
impact on the reconstruction, however, large overshoots while WENO schemes apply weights to stencils. In one
in the reconstruction are not expected. This would not be dimension, this difference is probably moot; the same
true if nonsmooth data were included. points are likely to have high weights either way. In multi-

ple dimensions, the difference between schemes will de-
3.5. Comparison with WENO Schemes pend on how multidimensional WENO stencils are chosen.

It is probable that some smoothly connected data wouldConceptually, there is a great deal of similarity between
be ignored by a multidimensional WENO scheme.WENO schemes and the new DD-L2-ENO schemes. Both
Whether this would make a practical difference in theseek to produce a high-order accurate, essentially nonoscil-
reconstruction is far less clear.latory reconstruction of a function, eliminating the deleteri-

ous effects of using nonsmooth data in reconstructing a 4. DD-L2-ENO schemes have a built-in mechanism to
allow accuracy degradation when insufficient smooth datafunction by giving nonsmooth data a weight no larger than

the order of the truncation error. In both cases, the weights exists. Specifically, if too little smoothly connected data
exists, the degree of the reconstruction is automaticallyvary smoothly with changes in the control-volume aver-
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reduced to a level for which there is sufficient smooth data. 4. FUNCTION RECONSTRUCTION
WENO schemes, like stencil-searching ENO schemes,

Because the new DD-L2-ENO scheme is designed forwork from the premise that there will be sufficient smooth
use on unstructured meshes, results will be compared bothdata if only it can be found. In cases where function discon-
to ENO reconstructions and to a standard algorithm fortinuities are very closely spaced, this assumption fails.
unstructured meshes, least-squares reconstruction withWENO schemes can produce poor reconstructions here,
Venkatakrishnan’s limiter [2].while DD-L2-ENO schemes will produce a low-order accu-

rate reconstruction using only smoothly connected (5rele-
4.1. Reconstruction Accuracy for Smooth Functionsvant) data.

Figure 1 shows the L1 error in the reconstruction of a
sinusoid on a periodic domain using four reconstruction3.6. Summary
techniques: data-independent least squares, data-indepen-

The data-dependent least-squares approach can be used dent least squares with Venkatakrishnan’s limiter, RP-
to produce function reconstructions which satisfy the ENO ENO, and DD-L2-ENO. In each case, the nominal order
condition. The least-squares heritage of these DD-L2-ENO of accuracy of the reconstruction is attained, except for
schemes allows them to be applied easily to function recon- the limited reconstruction, which is only first order because
struction on unstructured meshes in multiple dimensions. of the reduction of gradients near smooth extrema.
The algorithm can be summarized as follows:

4.2. Solutions of the Scalar Wave Equation• Input. A computational mesh, structured or unstruc-
tured. For each control volume, the average value of a Solutions to the scalar wave equation in one dimension
function to be reconstructed. were computed using a complex initial condition. The sca-

lar wave equation is• Output. An ENO reconstruction of the function, in
the form of a modified Taylor series expansion about each

ut 1 ux 5 0, 21 , x , 1,vertex, valid within the control volume surrounding the
vertex. u(x, 0) 5 u0(x) (25)

• Preprocessing. For each control volume Vi , find a suf-
Periodic BC,ficiently large set of nearby control volumes hVjji for recon-

struction of the desired order. Generally, this requires
where u0 is a function given by Jiang and Shu [7]:finding first or second neighbors for each vertex.

• Preprocessing. Compute all control volume moments
u0(x)that will be needed in the least-squares problem of Eq. (12).

• For each control volume each time a function is recon-
structed:

1. Compute geometric weights and construct the
5 5

G(x, z 2 d) 1 4G(x, z) 1 G(x, z 1 d)
6

, 20.8 # x # 20.6,

1, 20.4 # x # 20.2,

1 2 u10(x 2 0.1)u, 0 # x # 0.2,

F(x, a 2 d) 1 4F(x, a) 1 F(x, a 1 d)
6

, 0.4 # x # 0.6,

0, otherwise,

arrays needed for the data-independent least-squares
problem of Eq. (12).

2. Solve the least-squares problem using House-
holder transformations. The solution algorithm should not
destroy the original arrays and should return both the (26)
solution and the residual of the least-squares problem,
along with information about how many derivatives were with
actually calculable.

3. Using the residual of the least-squares problem,
compute a data-dependent weight for each control volume
in the stencil and multiply the appropriate row of the origi-
nal least squares problem by this weight. Keep track of

G(x, z) 5 exp(2b(x 2 z)2)

F(x, a) 5 Ïmax(0, 1 2 a2(x 2 a)2) 5
a 5 0.5

z 5 20.7

d 5 0.005

a 5 10

b 5 log 2/36d2.

(27)
how many high weights there are, as this limits the number
of derivatives which can be plausibly calculated.

4. Re-solve the least-squares problem. The result
gives the derivative terms to be used in the reconstruction
of Eq. (3). Figure 2 shows the result of propagating this function
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to t 5 8 on a mesh with 200 points using fourth-order
Runge–Kutta time advance with a CFL number of 0.4.
Only third- and fourth-order solution are shown; the sec-
ond-order solutions are all highly smeared. The third-order
DD-L2-ENO scheme performs nearly identically to the

FIG. 2. Linear wave propagation.

third-order RP-ENO scheme; each is much better than the
DI-L2 result, which contains significant overshoots. For
fourth-order nominal accuracy, RP-ENO is slightly better
than DD-L2-ENO for all four profiles.

4.3. Nonsmooth Function Reconstruction
in Two Dimensions

The new reconstruction scheme was tested for non-
smooth function reconstruction in two dimensions. The
function chosen is that of Abgrall [9]1

u(x, y)

5 Hf(x 2 cot Ï(f/2)y), x # cos fy/2,

f(x 1 cot Ï(f/2)y) 1 cos(2fy), x . cos fy/2,
(28)

with

f(r) 55
2r sin S3f

2
r2D, r # 2

1
3
,

usin(2fr)u, uru ,
1
3
,

2r 2 1 1
1
6

sin(3fr), r $
1
3
.

(29)

1 Several typographical errors in the definition of this function in [9]
cause a mismatch with the plotted function therein; the function shown
here matches the plots in [9].FIG. 1. Reconstruction of a smooth function.
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FIG. 5. Control volumes which fail to attain fourth-order accuracy
FIG. 3. Contours of the function defined by Eq. (28).

(k 5 3).

Contour plots of this function are shown in Fig. 3. Be-
the control volumes for which the nominal order of accu-cause the reconstruction scheme is k-exact, we know that
racy was not obtained. Traces of the discontinuities can bethe accuracy of the reconstruction in smooth regions of
clearly seen in both figures, with control volumes showingthe function will be of order k 1 1. Norms of the error in
degraded accuracy usually losing only one order (84% forthe reconstruction are meaningless in this context, because
third-order, 59% for fourth). Also, full accuracy is generallythe difference between the actual function and its recon-
obtained on the boundary until the fourth order, for whichstruction is guaranteed to be O(1) in control volumes that
some control volumes lack enough second neighbors forare crossed by a discontinuity. Instead, for nominal third-
the reconstruction. No attempt has been made to furtherand fourth-order accuracy, respectively, Figs. 4 and 5 show
extend these stencils into the interior of the mesh to rem-
edy this problem.

5. INVISCID FLOW SOLUTIONS

The reconstruction of Section 3 can easily be extended
to systems. The approach taken here is to reconstruct all
components simultaneously. In this case, the least squares
problem of Eq. (12) has as many columns on the right-
hand side as there are components in the system. The
expression for the residual R is extended to be

R 5 !(1/C) OC
c51

On
l5m11

r2
l,c , (30)

where C is the number of columns. In the present work,
primitive variables (r u P)T are used for reconstruction
throughout, and the density is chosen to compute the
smoothness indicator. As in the scalar case, the least-
squares problem is modified by multiplication of each row
by the data-dependent weight for that control volume, andFIG. 4. Control volumes which fail to attain third-order accuracy

(k 5 2). a second least-squares problem is solved.
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FIG. 6. Density plots for Sod’s shock tube problem.

5.1. Sod’s Problem

FIG. 7. Mesh for high a case; 3323 vertices.The first result presented is the solution of Sod’s shock
tube problem in one dimension. The initial conditions are

upper surface. A detail of the surface pressure coefficient
(r u P)(x, 0) 5 H(1 0 1), x , 0,

(Ak 0 aQ;), x . 0.
(31) in this region is shown in Fig. 8; the figure also includes a

solution from INS2D to which the Karman–Tsien pressure
correction has been applied. The two unlimited reconstruc-

Fourth-order Runge–Kutta time advance was used with tion schemes give identical results to plotting accuracy;
a CFL number of 0.6 on a 400-point mesh. Note that recon- the limited scheme comes slightly closer to capturing the
struction for this problem used primitive variables, not suction peak. The limited resolution near the leading edge
characteristic variables. Density at t 5 2 is shown in Fig. prevents any of the three solutions from matching the
6. The data-dependent schemes provide better resolution suction peak computed by INS2D on a fine mesh.
near the contact discontinuity and the ends of the expan- AGARD test case 1 [14] was used to test the new scheme
sion fan while keeping overshoots acceptably small. The for flows with shock waves. This case computes flow around
contact discontinuity becomes progressively sharper with
increasing order of accuracy and accuracy near the head
of the expansion improves similarly.

5.2. Two-Dimensional Inviscid Airfoil Problems

To demonstrate solution accuracy for two-dimensional
aerodynamics problems, two inviscid flow results will be
shown. For both cases, the flow solver is a multigrid scheme
using three coarse meshes. Multistage time advance is used,
along with local preconditioning [12, 13]. The CFL number
is 0.8, and the multistage coefficients are h0.5321, 1.3711,
2.7744j.

The first test case is a high angle of attack flow around
a NACA 0012 airfoil, at M 5 0.302 and a 5 9.868. Figure
7 shows the fine mesh used for this case, which contains
3323 vertices. The solution was computed by using unlim-
ited DI-L2 , limited DI-L2 (Venkatakrishnan’s limiter [2]),
and unlimited second-order DD-L2-ENO. The solutions

FIG. 8. Surface Cp near suction peak.are virtually identical except near the suction peak on the
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6. CONCLUSIONS

A new method for function reconstruction has been de-
scribed that combines the best features of least-squares
and ENO reconstructions. This new scheme, DD-L2-ENO,
uses a data-dependent weighting in least-squares recon-
struction to satisfy the ENO condition of Liu, Osher, and
Chan [6]. Like other ENO schemes, DD-L2-ENO is uni-
formly accurate, even in the presence of discontinuities,
and allows only asymptotically small overshoots.

Because DD-L2-ENO is a least-squares reconstruction
procedure, existing efficient algorithms for least-squares
reconstruction can be easily modified for DD-L2-ENO. An
algorithm for computing DD-L2-ENO reconstructions of
arbitrary order on unstructured meshes is given. The data-
dependent weights used in the scheme vary continuously
with the data and consequently good convergence behavior
is anticipated for steady-state calculations. The stencil for
DD-L2-ENO is larger than that required by conventional
ENO schemes, but no larger than required by k-exact least-
squares reconstructions of the same order of accuracy.FIG. 9. Mesh for AGARD Test Case 1; 4156 vertices.

The asymptotic behavior of the scheme in reconstructing
smooth and piecewise smooth functions has been demon-
strated. DD-L2-ENO produces uniformly high-order accu-a NACA 0012 airfoil at a Mach number of 0.8 and an
rate reconstructions, even in the presence of discontinu-angle of attack of 1.258. A mesh with 4156 vertices was
ities. The new scheme behaves comparably to RP-ENO inused (see Fig. 9).
solving the scalar wave equation in one dimension.The solution was computed by using both limited DI-

A feature of the new scheme is its ability to detect andL2 reconstruction and second-order DD-L2-ENO recon-
control situations where insufficient smooth data existsstruction. The surface pressure coefficients for these two
for the desired order of reconstruction. In such cases, thesolutions and for the accepted AGARD solution [14] are
scheme automatically determines the amount of smoothgiven in Fig. 10. An inset shows a close-up of the upper-
data present and computes a reconstruction of appropri-surface shock, which is shifted by one mesh vertex between
ately reduced accuracy. This capability was demonstratedthe two solutions. The quality of the solutions using limited
by reconstructing a nonsmooth function; control volumesDI-L2 reconstruction and unlimited DD-L2-ENO recon-
for which insufficient smooth data existed were shown tostruction are comparable.
have a lower-order reconstruction computed instead.

Extension of the reconstruction scheme to systems was
discussed. As examples of the behavior of such reconstruc-
tions, solutions were shown for the Sod shock tube problem
in one dimension and for two aerodynamic problems in
two dimensions. These early two-dimensional results are
very encouraging. In all cases, solution accuracy was com-
parable to existing schemes suitable for unstructured
meshes and overshoots in the solution were of accept-
able magnitude.
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